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CONFIDENTIAL. 

Introduction. 

M!fil_STRY OF HCME SECURITY • 

• CIVIL n.r;F'~Ncr; RESEARCH CGl1iITTEE. 

The~tonation velocity of solid explosives contained 
in long cylindrical tubes of vaz:ying weight, 

by Dr. H. Jones. 

R. c. 247. 

The Chapnan-Jouguet theozy of the detonation of gases contained in 
rigid tubae has been applied by many authors to the detonation of solid explos
ives. Calculations by A. Schmidt, R. Becker, Langweiler, and more recently 
Y.istiakowsky and Wilson, have used the theoiy in an inverted sense to calculate 
fran the observed detonation velocities the covo .umes of the gases fonned in 
the detonation process. In the earlier calculations of A. Schmidt and La.ng
weiler the covolumes so determined seemed to bear little relation to the actual 
size of the moJecules. Y..istiakowsky and Wilson, however, using a more flex
ible fonn ror the equation of state, obtain values which, reduced to roan 
temperature, are not incanpatible with the b of van derWaal's equation as 
detenni.ned at ordinary pressures. A practical aim of these calculations is 
the prediction of the detonation velocity of possible new explosives. Applied 
to explosives which detonate with the developnent of very high temperatures 
these calculations, regarded f:ran this practical standpoint, have considerable 
success; they fail canpletely when applied to ammonium nitrate or similar ex
plosives, always predicting {with the covolumes determined fran other explos
ives) a velocity far in excess of the observed value. The same failure occurs 
with calculations made along the lines of R.Co166 (cf. § 5e of this note.) 

It seems, at first sight, remarkable that the Chaµna.n-Joueuet theory 
in no way· involves the velocity of the reactions which lead to the breakdown 
of the explosive molecule and the fonna.tion of the product gases. This is 
because the theory visualizes a steady state in a rigid tube and connects the 
properties of the unexploded gas with those of the cccplctely reacted gases. 
The distance which separates these two conditions is :ilnmaterial to the theory. 
There thus appears to be a f'und.amental distinction between the process of de
tonation in gases and in solids, viz. that in gases the confining tube remains 
intact whereas for solid high explosives, however strong the confinement, sane 
expansion, if' not canplete shattering, alwa.,ys occurs. It is clear, therefore, 
that for solids the distance, in the steady state, which separates the onset 
and the canpletion of the reaction must play a part in detezmining the deton-
ation velocity It has been shovm by Boyes that, asst.ming rigid confinement, 
the pressure is actually higher in the reaction zone than at the point where 
the reaction is canplete. Hence, if the length of the reaction zone is can
parable with the diameter of the charge, an appreciable expansion must have 
occurred before the whole of the explosive is converted. In other words, part 
of the explosive is being transfonned at an effectively lower loading density 
and therefore the velocity may be expected to be less than that given by the 
Chapnan-Jouguet theory assuming infinitely strong confinement. The fact that 
fox· the more powerful high explosives the calculations already mentioned are 
not unsuccessf\ll must be due to the ver-y high rate of the reactions taking 
place, so that in general the length of the reaction zone is very small canpared 
with the diameter of the charge. Nevertheless reasons are given in § 5 for 
believing that in T.N.T. the observed velocities may be as much as 10 per cent. 
less than the theoretical values assuming rigid confi.nement. 

In a recent canmunica ti on (R. c, 1 93) Prof esso.r G. I. Taylor has 
analysed the process of an explosion in a long cylindrical tube and has shown 
how the radius of the tube increases Wlder the adiabatic expansion of the pro
duct gases of the detonation wave. The analysis of the present note is along 
the lines of Professor Taylor9s paper; the main difference, in the ma.thematics, 
is that in Professor Taylor's calculation there existed a known relation between 
the pressure and the density, viz. the adiabatic relation, whereas in the 
present calculations such an algebraic relation does not initially exist but is 
replaced by a differential relation. In other words, in the present calcul
ations, the differential equation expressing the adiabatic condition cannot be 
integrated independently but only simultaneously with the equation of motion. 
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§ 1. The general eqµations of the detonation process. 
I 

We consider the detonation of a long cylindrical charge suITounded 
by a casing of weight ~ per unit length. When the detonation process is 
tully developed a steady state is established. If the detonation velocity 
is U we consider the process fran axes moving with this velocity. The shock 
wave front in the solid is then at rest. This point is taken as the origin 
x = Q. Behind the shock wave front the velocity of the reacting material 
we denote by q which is, of course, a function of x. There is a discontinu
ous change of pTessure and density at the shock wave front. Let E .... (p, f) be 
the energy per unit mass of the unexploded material at pressure p and density 
f reckoned fran a zero at p = o. The equations connecting the conditions 

on each side of the discontinuity are then 

• • • • • • ( 1 ) 

whe ~ is the unexploded density, and p0 p
0 

, <lo are the density, pressure, 
and velocity in the shock wave front. 

The equation of continuity, when the angle of the expanding tube 
i small, can be expressed 

...... 

when R0 is the initial tube radius and R the radius at the point x. The 
equation of mot on to the same approximation is 

(2) 

~ + ! ~ 0 (3) 
q ~x f d7 = ······ 

Let Ee(P,f) denote the internal energy per unit mass of the converted 
explosive materi , and let n denote the fraction of the explosive which has 
been converted at a. particular point x. Then it E be the total energy per 
unit mass 

E - nEe + ( 1 - n) E 14 
...... 

The pressure in both parts of E must be the same but the density may, of 
course, be different. 

(4) 

Also we denote by Ho the whole of the cb~cal energy released per 
unit ma.ss when the reaction is canplete. At any point x the energy released 
is denoted by H and therefore 

H = nH0 
• • • • • • ( 5) 

In addition to the kinema.tioal equation of continuity (2) and the 
dyn8mi equation (3) we ha also a thermodynamical equation expressing the 
conservation of energy. We write this in the fonn 

. . • . • • ( 6) 

This equation assumes that no heat is transferred fran one element to the next 
during the developnent of the reaction fran the shock wave front to the point 
at wi11ch the reaction is canplete. We are therefore anitting any consider
ation of the actual kinetics of the process by which the reaction is propagated, 
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with the result that the problem of the propagation of detonation is insol
uble vri thout a further basic assumption. In the case of gases the assumption 
generally known as the Chapnan-Jouguet condition has proved successful and has 
been justified theoretically by Boy" for the case in which the mechanism of 
the reaction depends on heat conduction.. 

In the present calculations, which attempt to talce account of the 
finite time required for the canpletion of' the reaction in the detonation 
wave and the consequent expansion during this reaction, we apply the Cha.pnan-
Jouguet condition in a slightly generalised form The assumption made is 
that at the point where the reaction is canplete the velocity is equal to the 
local velocity of sound. If we denote by X the value of x at the point 
where the reaction is complete, and the conditi.ons at this point by the sub
script t the above assumption is expressed by 

q, = c, • . • . • • (7) 

where c, is the velocity of sound at x - x. For infinitely strong confine
ment this is identical with the usual condition applied to gases and solids. 
Since 

. • • • • . ( 8) 

the condition (7) becanes 

={~- (~).}/ G!c), 0 ..... (9) 

· In addition to equation (3) there is another dynamical equatl.on detennining 
the expansion of the casing, vizo 

( ~J~) pR ( 10) 

in which t has been replaced by x/u since we are dealing with a stea~ state. 

§ 2. Reduction of the equations to a fozm suitable for integrationo 

In order to solve the above equations we make a number of assump
tions. These are of' a different kind fran (7); they express the initial 
chemical infonnation upon which any theory of detonation must be based, and 
could be modified without affecting the main conclusi.ons. 

Fir3t we assume that the reaction velocity is caistant throughout 
the reaction zone; i.e. 

n = (x/X) • • . . . • ( 11) 

Secondly we truce a very simple fonn for Ee, viz. 

• • • • . • ( 12) 

where c is a constant of the nature of a specific heatQ Thirdly we assume 
that Ho is independent of p and f (this has been sh01!'11 to be very nearly the 
case for T.N.To) 

. . . H = x H x 0 
• • • • • • ( 13) 



-4-

Fourthly we assume that in the expression for the energy 

E = .! c .E + ( 1 - .!) Ei.c. x f x 
• • • • • • ( 14) 

E
14 

can be regarded as a constant. 

It is convenient to use the following abbreviations:-

y = ~ , h0 = !!£. and r = R/R0 • 

f u~ 

Equation (6) can then be written, making use of (1), 

...... ( 15) 

Equation (3) with (2) beccmes 

• • • • • • ( 16) 

which can be rewritten 

• • • • • • ( 17) 

and integrating fran O to x and using equatiom ( 1) we have 

#A = 1 - y + ~( 1 - r"') + t ¢ • . • • • • ( 18) 

Jr 

where = J ( 1 - r-4) a dx 
o ;:}x 

• • • • • • ( 19) 

-· It is convenient to write the equations in this wey since 1 - r 
is small for heavy confinement, vanishing of course for rigid tubes. If we 
integrate in a similar wa;r equation { 15) we obtain 

A partial integration gives 

and hence (20) becanes 

Y;i{ (X + 2cx) - cx{1-r"'t)J - (2 +;){ex+ X) y 

+ f (X + 2h.,x) - (X - x)( 1 - y0 );;i.J = 0 

• • • • • • (20) 

• • • • • • ( 21) 
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This equation is not merely a quadratic in y since (; also depends on y. It 
is, however, a usef'ul fonn for our purpose since p is Sll1B..ll for heavy confine
ment, i. eo large A. • 

Fran equation (8) for the velocity of sound we find 

( ~)i = _E_ ( 1+c) 
U~A 0 y .. 00 .. (22) 

and thus the Chapnan-Jouguet condition (9) with equation (2) gives 

• . • • • • ( 23) 

which can be rewritten with the help of (18) 

y1 [ {1+2c) - c{1-r-i.)} = (1+c)f 1 + -b, (1-1("°)+ i¢,} • • • • • • (24) 

when all quantities refer to the point where the reaction is canplete. Also 
at x = X {21) becanes 

Y,2 
[ (1+2c) - c{1-r-'*")] - (2+ ¢)(1+c)y1 + (1+2h 0 ) = 0 

which with (24) gives 

cl. + (1+c)'1 "' i. 111'" 1 ,,.( -·);l 
2Ho 

= -ur = 
'f1 + 4 Fl - 4'°1 1-r, + c( 1-r,-4 ) 

1 +2c - o 1-r, -

For infinitely strong confinement ¢ = (1-r-Lt) = O and we have 

2Ho = u -.:i.( c'") 
"° 1+2c 

where U._ denotes the detonation velocity in this limiting case. 

We can write equation {26) therefore as follows 

= 1 + c~r· [ fJ, + * ¢,:J.- -.br;c1-r,-'t):l.] + ~ (1-r;4
) 

1 - ( 1~20)(1-r,-J 

• . . • . • (25) 

(26) 

• • . • • . ( 27) 

(28) 

This equation does not, of course, give U Wltil y and r have been obtained as 
functions of x. This is achieved by successive approximation for the case of 
heavy confinement. 

§ 3. The solution for a non-expanding tube. 

In this special case ¢ = 1-r-'t = 0 and 2h0 = c/'{1+2c) and therefore 
(21) reduces to 

y_,(1 + 2c ~) - 2{c 2£ + 1)y + [ 1 +(~\,! - (1-.!)(1-y0 )
1J 

X X 1+2c/. X X 
= 0 

(29) 
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We denote the solution of this equation by y<0 >(x) and regard it as 
the zero order approximation for the solution in the case of an expanding tube. 
The solution of (29) which satisfies the initial condition that y = y

0 
for 

x = O is 

y(o) (x) = 

When x = X we have y/
0

) • ( 1 +o )/( 2c+1) which is independent of y 0. In order to 
see the nature of the variation of y <0J with x we may take a special example 
c =~which corresponds to y,<o) = i or (f/~>; Ll) = 1.33. Instead of y t>> we 
give 1-y ~) which is equal to p <i>) ;u:i.~. 

~ ) 
0 .2 .4 .6 .8 1. 0 

.75 .25 .25 .25 .25 .25 .25 
• 6o .40 .388 .374 .356 .330 .25 
• 50 • 50 .474 .446 .413 .369 .25 
.40 .60 • 563 • 516 .467 .406 .25 

It will be seen that the pressure is always greater in the reaction 
zone than at the point where the reaction is ccmplete. There is no solution 
~ssible when (Ll / p0 ) > (1+o)/(1+2o), that is it is necessar,y that ?a ~ f 1 
lll order that a solution may exist. When fo = f, the density and the pressure 
are constant throughout the reaction zone. 

(C!) 
The rate of change of y with x at the point x = 0 is given by the 

following equation obtained fran (30) 

x(~\ = 
;)x Jo • • • • • • (31) 

In the following we denote X ~ by a. ( 
(o) ), 

;) x 0 

§ 4.. An approximate solution for an expanding tube when the expansion is small. 

ii We obtain an· approximate solution to (21). by calculating (1-r-"') and 
't' fran the known zero approximation for y, viz. y ~J(x). The first approxi

mation therefore tor as a function of x is given by (10) and (18) neglecting 
in these equations the terms ( 1-r-'t) and <{J • Hence the equation giving the 
first approximation to r is 

= ( 
(o) ,\ 

1 - y (x)/r •••••• (32) 

We make the f'urther approximation which the ~ceding table shows to be not too 
unsatisfactory, of replacing y(0J(~) by y

0 
+ a-. The solution of 

x 

= • • . • • • (33) 
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to first powers of A/X. is 

• . • • • • (34) 

and therefore 

. . • • • • (35) 

and 

¢ •••• 0 0 (36) 

With equs. (35) and (36) a first approximation to (21) could be ob
tained. Clearly higher approximations could only be found numerically, . i.e. 
for a particular case in which the numerical values of all the coefficients 

. are known. It would then be possible to find solutions of any degree of 
accuracy. For the present purpose it is more interesting to obtain general 
results for the case of heavy confinement, i.e. for small 1-r-'t. To first 
powers ot fiX 2 therefore equation (28) becanes 

A. 

• • • • • • (37) 

and using equations (35) and (36) we find 

= • • . . • • (38) 

where 

f = !t (.!:!:£)
2 [< 1-Y, ) {-2.£._ + a J -a [ ___£__ + .!. J] 3 c o 1+2c 1+2c 4 

• . . . • • (39) 

and a is given by equation {31 ). Since ( f/0

)/ 4) = 
f' can be expressed in terms of (fo / 11) and (fcay A ). 
an idea of the magnitude of this factor. ' 

~ 1. 2 1.3 1. 4 

10 2 2. 79 
1.3 3.86 2.37 
1.4 4-89 2.94 2.04 
1.5 5.86 3.45 2.38 
2.0 10.35 5.59 3. 74 

(2o+1)/(c+1), th factor 
The following table gives 

1.5 2.0 

1. 78 
2.73 1. 00 

If 't denotes the time taken for the whole conversion of the explos
ive then X = UT, and if also in place of i\ we use the ratio of the weight 
of the case to the weight of the explosive «. so that ')>.. =IT R! A""- , 
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equation (38) may be vrr tten 

( ~-)~ = 1 + (40) 

Still another way in which the result can be shown is as follows 

Uro -U 
~-- = Uoo 

• • • • • . ( 41) 

where a- is the mass per unit area. of the encasing tube. This would be applic
able to the case of the variation of U with diameter for tubes of given thick
ness. The relation between °' and R0 shown in (40) has already been noted by 
Professor Taylor (R.C.193). 

§ 5. Canparison With experimental data. 

There does not appear to be, unfortunately, much plblished data in 
which sufficient details are given to make a quantitati\re canparison with the 
foregoing calculations. There are, however, a number of properties of 
detonating explosives which appear to fit in fairly well with the above 
equations. 

(a) It is observed that although the detcnation velocities vary with 
diameter and degree of confinement the variations are, in the case of the more 
powerf'ul. explosives, only of the order of a few per cent. for ccnparatively 
wide variations of o<.. and R0 • It follows, therefore, accordlng t o (40), that 
X = UT must be appreciably less than the diameter of the charges ordinarily 
used, e.g. it must not be more than 1 or 2 mm. for substances such as picric 
acid or T. N. T. 

It is very tempting to correlate the excess width of the well marked 
trace on moving film photographs with the thickness of the reaction zone. A 
reason supporting this hypothesis is that the canparative sharpness of the 
trace makes it very difficult to assign it to temperature radiation since the 
gases for sane distance behind the detonation wave front have still very high 
temperatures. If not to temperature radiation it would appear to be due to 
chemi-luminescence, i.e. to the radiation emitted during the break.down of the 
explosive molecule and the fonnation of the gas molecules. P. Laffitte 
(Arm. de Physique, 1925, 10, p.659) remarks that in all his photographs the 
trace was quite sharp and.""that the thiclaless of the image corresponded closely 
with the thiclmess of the tube photographed. That is to say it was not 
appreciably thicker than ould be given by an infinitely thin disc of light 
of the diameter of the charge. If we accept the eypothesis that the thickness 
of the disc of light which is photographed in these experiments can be identi
fied with the width of the reaction zone X, La.:ffitte's experiments show that 
X << R0 , which is necessary according to (40) if the detonation velocity is not 
to be far too dependent on R

0 
and ~ • 

{b) Such quantitative experimental work as has been published on the 
variation of detonation velocity with diameter of charge refers mainly to 
charges with very light paper confinement. The effect of the inertia of the 
air shock wave is much more difficult to consider than that of a metal casing. 
However, if we replace <r by an effective surface density CT;f due to the 
outside gas and the light covering, it makes a very rough canparison with (41) 
possible. 

R. F~rg (S.S., 1916, p.37) has given the following figures for the 
variation of detonation velocity for T.N.T. enclosed in paper covers. 
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Diameter Cubic density Det.velocity (UIMJc - U)/U-.x 

2.0 ans. 0. 80 gJD/ cm.3 3765 m/sec .. 0081 
3o0 " o.80 " 3905 n .04.7 
4->0 " o. 79 It 4054 n 0011 
5.0 " Oo83 n 4099 " .oo 

In the last column U~ denotes the detonation velocity at the greatest dia
meter used, viz. 5 cra.s .. 

If in (4-1) we take the value of f/4 x U;it" ~A/er~. to be 0.1 ems., 
the values of (U~ - U)/U00 would be for the diameters of tne above table 0.1, 
.067~ .05, .04 which gives the same sort of variation since U~ < U00 • We 
have seen, however, that f is of the order of 4 and for the above case 
1J. = • 8 gJD/ an 3 and it U 't is taken to be not more than 1 nm. , as photographs 
suggest, then is-~ is not more than 0.1 f!Pllcm.~ which is a plausible value 
being not much more than the weight of a paper covering. 

The effect of the variation of the diameter of charge on the deton
ation velocity is still more pronounced for the less powerful explosives such 
as anmonium. nitrate or potassium nitrate mixtures or sane of the 'milder' 
dynamites. For example, Dautriche found for ched.dite an increase of about 
2~ in the detonation velocity when he increased the diameter fran 2 to 4 ems. 
Also Laffitte finds a detonation velocity for No.1 dynamite about 500 m/sec. 
less than the value found b.Y Dautriche for the same substance and ascribes the 
difference to the fact that his tubes were 4 mm. diameter whilst Dautriche 
used 20 li1II. tubes. The increased effect of the diameter or the casing weight 
for the weaker explosives is in agreement with equation (41), since for these 
explosives the temperature of the detonation wave is lower than for the power
ful high explosives and consequently 't' is larger. 

(c) Calculations of the detonation velocity of T.N.T. based on Bridgman's 
canpressibility data for nitrogen (R. C. 166) were found to be fran 12 to 15 per 
cent. greater than the observed values. These calculations assumed infinitely 
strong confinement and it appears that part at least of the discrepancy may 
be due to this assumptiono At a loading density of 0.8 f!!Il!c::m~ the above dis
cussion suggests that U might be 10 per cent. less than U.,., for charges not 
exceeding 1 ·cm. diameter and with very light covering. 

(d) A characteristic feature of detonation velocity - loading density 
curves is a tendency to flatten at high loading densities, i.e. for the rate 
of increase of the detonation velocity with density to becane smaller. In 
the case of sane explosives, notably cheddite, the curve actually reaches a 
maximum beyond which the velocity decreases as density increases. It was 
shown in R.C.166 that, in general, the temperature of the detonation wave 
decreased with increasing loading density. Although the reaction mechanism 
of the detonation wave is not understood at present it is a fair assumption 
that the rate of reaction will decrease with decreasing temperature; in other 
words 1; will increase as the temperature fallso This could therefore explain 
the flattening of the U, CJ. curve which does no appear to be due to the 
equation of state, for in none of the cases so far examined has the Uoo , l1 
curve shown any such tend.ency at high densities. 

A limitation to the applicability of (38) (apart fran the many 
approxima. tions a.lready discussed) is that ~ , in the w133 it has been used in 
these calculations, cannot in practice be increased indefinitelyo Merely 
increasing the weight and thiclmess of the confining tube does not, beyond a 
certain point, increase ,\ because of the canpressibility and fluidity of all 
actual substances. Thus the fact that the detonation velocity of T.N.T. at 
high densities does not appearR judging by published da.ta, to exceed 7,000 
m/sec. even with fairly strong confinement does not necessarily mean that this 
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velocity is the ideal maximum corresponding to infinitely strong tubes, and 
does not therefore rule out the suggested explanation of the observed dimin
ishing of (dlJ/dl\) for high Ll • 

( e) Using the methods of R. C.166 the ideal maximum detonation velocity 
U<X> of ammonium nitrate as a function of loading density has been calculated.. 
The results are given below. 

A f!Pl/aIJ.3 0.475 Oo580 o. 708 o.837 0.984 

Ucio m/sec. 2608 3069 3781 4570 54~ 

TOK.. 1431 1430 1425 1400 1300 

It is interesting that observations of detonation velocities of 
ammonium nitrate, and of ammonium nitrate with small quantities of other sub
stances, vary very extensively between different observers and appear to be 
very sensitive to the conditions of coni'inement, and even more to the addition 
of small quantities of oxidisable material, e.g. carbon or aluminium. The 
actual values of U (cf. Marshall, Explosives) are considerably less than the 
values of U Q> given above at the corresponding loading density. These facts 
appear to fit nicely with the very low temperature of the detonation as shown 
in the above table which indicates an exceptionally large reaction time and 
therefore, according to (41) an exceptional sensitivity to the conditions of 
coni'inement. The ad.di tion of carbon or aluminium allows f'or the absorption 
of the excess oxygen in the detonation products of ammonium nitrate and the 
fo:nnation of 00 1 or Al~03 • The great heats of formation of these molecules 
result in a considerable increase in the temperature of the detonation wave 
and therefore to a reduction in the reaction time, which according to (41) 
brings the detonation velocity closer to Uoo. 

August 1941. 
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